SIMBA
SCaaS

INTRO TO SIMBA CHAIN'S
SMART-CONTRACT-AS-A-SERVICE

SIMBA Chain Smart Contract as a Service (SCaaS) provides a tailored interface to your

blockchain, defined by the smart contract you have designed at simbachain.com.

OVERVIEW

SIMBA Chain Smart Contract as a Service (SCaaS) provides a tailored interface
to your Blockchain, defined by the smart contract you have designed at @SIMBA
simbachain.com. SCaaS provides two main services related to a smart contract:

1. AREST API that models the methods and arguments in your smart contract ABOUT SIMBA CHAIN
to bring your business process endpoints to the enterprise. A simple POST SIMBA stands for Simpler
to the APl will result in a transaction on the Azure Blockchain. Blockchain Applications. The
2. The Explorer Interface to query for transactions on the block chain. Browse, SlMBA Platform make; it easy
search and view the details of all of your Blockchain transactions for each tq build, deplqy and mterface
Smart Contract using the SCaa$S Explorer. with Blockchain applications,

democratizing the Blockchain.
It builds on top of that platform and allow you to easily create smart contracts.

BLOCKCHAIN

For the Blockchain layer, SIMBA provides a generic APl to multiple Blockchain systems, thus the system does
not have a dependency on a single Blockchain or DLT implementation. Currently, the platform supports
Ethereum, Quorum and Stellar but several more are on the roadmap.

SMART CONTRACTS

Smart Contracts provide the interface, and business logic, to what is
written on the Blockchain and what rules need to be satisfied for this write
operation to take place. In SIMBA Chain, Smart Contracts are automatically
generated from conceptual models that define the Assets and Transactions
that transact on those Assets. Such models are specified using SIMBA's
Web App’s Ul shown on the right. A user simply uses the GUI to add Asset
or Transactions along with their methods and parameters, and SIMBA
Chain automatically generates the smart contract for the platform they
select (in this case, Solidity code for Ethereum). It also generates a graph of
the relationships for the model as shown. The resulting smart contract, once
deployed on the blockchain, is dynamically exposed as an application REST
interface for simpler external application interaction with the Blockchain.

DATA STORES

Data Stores in SIMBA Chain uses the same adapter pattern as the Blockchain one, that is, a single generic
REST interface can support the simple integration of different data stores. Currently SIMBA supports the
Ceph, IPFS, Azure Blob Store and flat file, system-based data stores. Data flows into the system through
the application’s REST API (generated by SIMBA) by attaching one or multiple files to the transaction.
Transactions are then checked for access before being passed to the data bundling mechanism, which
stores all files into the Data Store and collects each hashcode into a JSON manifest file which is bundled
along with the files and stored into the Data Store with its hashcode stored onto the blockchain.

Using this mechanism, the system can easily retrieve all files using the hashcode while the hash also serves
as a digest to guarantee the integrity of the data.

General documentation on SIMBA Chain is available at simbachain.com/documentation

SIMBA SMART CONTRACT-
AS-A-SERVICE (SCaa$)

SCaaS allows you to export applications: we auto-generate source code that binds to the specific
Blockchain system and Data Store configured for a Smart Contract. This contract and APl can then be
deployed to your enterprise environment. The diagram below shows how it works.

DESIGN SMART CONTRACT GENERATE AZURE SCAAS

=| — nedec — 5

S SIMBA | SIMBA CHAIN API &) INITIALIZE SCaas
[|

SCaaS CORE SERVICES ‘ SCaaS BLOCKCHAIN SERVICES

3
POST

APPLICATION <+—————p HTTP APl = QUEUE ———p BLOCKCHAIN
Transaction is

INITIALIZED Transaction
SUBMITTED
GET CHAIN
USER 4———p EXPLORER <—> CACHEDB < ————————
Query Transaction WATCHER
COMPLETED

Azure SCaaS leverages the built-in capabilities of Azure including Azure Active Directory (AD) for
authentication and authorization, Azure Key Vault for maintaining blockchain addresses or associated
private keys, Azure's Service Bus Queue in order to create a robust mechanism for pushing data to the
blockchain, Azure's blob store for off-chain storage and Azure managed instance of Postgres to store
transaction data, allowing fast query on the contents of the blockchain. Finally, SCaaS leverages Azure's
blockchain service. Currently this is the only blockchain supported, however, SIMBA supports multiple
blockchains and SCaaS will in the future allow a variety of possible blockchain backends.

HTTP API

The SCaaS HTTP API provides both POST and GET methods to push transactions and query for
transactions. These methods are linked to the method in the smart contract. The POST is the primary
APl to use as Explorer (see below) exposes the GET APl in addition to a general recent transactions view
across all smart contract methods.

A transaction sent to the blockchain goes through a number of states. When you POST a transaction, and
no errors occur, you receive a response that contains the unique request ID and a state of 'INITIALIZED'.
If the request fails, you will see a state of ‘FAILED".

Then, the transaction is submitted to the blockchain, which results in a SUBMITTED state. Finally,
once the transaction is embedded in the blockchain and will not be revoked, the transaction enters a

COMPLETED state and is cached for query.

EXPLORER
Explorer provides an interface to querying the blockchain. There are two primary views:
1. RECENT TRANSACTIONS - these are all transactions you have created on the blockchain. Some may

not have details available yet, especially the most recent.

2. SMART CONTRACT METHOD VIEW -This view shows the transactions relating to a particular smart
contract method. These transactions have been verified on the blockchain.

Recent Transactions shows submitted and completed transactions for all methods of your smart contract.
You can query on the various common fields that all transactions have such as request ID, the sender and
the transaction hash.

= SIMBA Explorer
AN o

Search conditienis): X
Semart Contraet

mathest ssact-saparch

Recent Transactions [+
Shetdds 4211100 T E . . a . : 201967

et TCA TR AT 32 BT I E I 007 e 4B TR B TORIST VAT T Pt WA SO0 I8 Tk 71 | e gt v
s O PRt CATHI AT TN o [AOTBATORISI SMA MUI04CR0 K6 Tr b T ol L patch Er L

Spte 201907

pracewn A 1A TR IABII LI S BT ! e bttt MRS 8400 ity cnpch SaMTID
1OTH I 132 -

200907
042087480 SOV 10574071 23 LESSTON smarmy aipach SMTTED

OWhASOCEN et | CATHIEATMBI BACE D1 ECHE BT HOTHRAZ 00 1052

0maer
e ol AP MBSO (CSADT Ca2OSEEIAND etaecatdicle : - dpach SAMITTED
1OTER 1189 Az g

ThechIBLIING

The Contract Method view allows you to view completed transactions. Here you can view the details of
transactions by method.

SIMBA Explorer
f smarty Methods
ar €
Campaneet
-]
arrival -
dispatch ~

Avalable Query Parameters:

datefstnng) i . oy) reighaj

hock{RtI5) _senderisiring] _staleisting) _sequesskd(string)

EXPLORE

Transactions that accept files also have two buttons on the left side of the row. These can be used to
download the bundle from Azure'’s Blob Storage and to view the JSON manifest describing the contents
of the files associated with the transaction.

5SIMBA

@& simbachain.com i info@simbachain.com [] 574-914-4446 @ 6100 Michigan Rd., Plymouth, IN 46563

